: Alzheimer's Disease (AD) is characterized by structural and functional dysfunction involving the Default Mode Network (DMN), for which the Precuneus (PC) is a key node. We proposed a randomized double-blind pilot study to determine neurobiological changes after 24 weeks of PC-rTMS in patients with mild-to-moderate AD. Sixteen patients were randomly assigned to SHAM or PC-rTMS, and received an intensive 2-weeks course with daily rTMS sessions, followed by a maintenance phase in which rTMS has been applied once a week. Before and after the treatment structural and functional MRIs were collected. Our results showed macro- and micro-structural preservation in PC-rTMS compared to SHAM-rTMS group after 24 weeks of treatment, correlated to an increase of functional connectivity (FC) within the PC in the PC-rTMS group. Even if preliminary, these results trigger the possibility of using PC-rTMS to arrest atrophy progression by manipulating distributed network connectivity patterns.

Macro and micro structural preservation of grey matter integrity after 24 weeks of rTMS in Alzheimer’s disease patients: a pilot study

Giove, Federico;
2024-01-01

Abstract

: Alzheimer's Disease (AD) is characterized by structural and functional dysfunction involving the Default Mode Network (DMN), for which the Precuneus (PC) is a key node. We proposed a randomized double-blind pilot study to determine neurobiological changes after 24 weeks of PC-rTMS in patients with mild-to-moderate AD. Sixteen patients were randomly assigned to SHAM or PC-rTMS, and received an intensive 2-weeks course with daily rTMS sessions, followed by a maintenance phase in which rTMS has been applied once a week. Before and after the treatment structural and functional MRIs were collected. Our results showed macro- and micro-structural preservation in PC-rTMS compared to SHAM-rTMS group after 24 weeks of treatment, correlated to an increase of functional connectivity (FC) within the PC in the PC-rTMS group. Even if preliminary, these results trigger the possibility of using PC-rTMS to arrest atrophy progression by manipulating distributed network connectivity patterns.
2024
Alzheimer’s disease
Brain plasticity
Cortex
Default mode network
Microstructural
Precuneus
Transcranial magnetic stimulation
File in questo prodotto:
File Dimensione Formato  
Mencarelli2023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14249/1422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact