FLASH Radiotherapy is currently being studied and actively explored by medical and radiobiology communities as one of the most promising technological break-through in the future of cancer treatment as it could considerably improve the sparing of healthy tissues when compared to conventional radiotherapy. However, the FLASH effect activation mechanism still needs a thorough investigation before the characteristics of a therapeutic beam could be properly defined. In this manuscript, a new method for the on-line monitoring of therapeutic beams at FLASH intensities, based on air fluorescence and developed within the FlashDC project, is presented.
The FlashDC project: Development of a beam monitor for FLASH radiotherapy
Garbini M;Marafini M;
2022-01-01
Abstract
FLASH Radiotherapy is currently being studied and actively explored by medical and radiobiology communities as one of the most promising technological break-through in the future of cancer treatment as it could considerably improve the sparing of healthy tissues when compared to conventional radiotherapy. However, the FLASH effect activation mechanism still needs a thorough investigation before the characteristics of a therapeutic beam could be properly defined. In this manuscript, a new method for the on-line monitoring of therapeutic beams at FLASH intensities, based on air fluorescence and developed within the FlashDC project, is presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.