The fragmentation of a colored parton directly into a pair of colorless hadrons is a nonperturbative mechanism that offers important insights into the nucleon structure. Di-hadron fragmentation functions can be extracted from semi-inclusive electron-positron annihilation data. They also appear in observables describing the semi-inclusive production of two hadrons in deep-inelastic scattering of leptons off nucleons or in hadron-hadron collisions. When a target nucleon is transversely polarized, a specific chiral-odd di-hadron fragmentation function can be used as the analyzer of the net density of transversely polarized quarks in a transversely polarized nucleon, the so-called transversity distribution. The latter can be extracted through suitable single-spin asymmetries in the framework of collinear factorization, thus in a much simpler framework with respect to the traditional one in single-hadron fragmentation. At subleading twist, the same chiral-odd di-hadron fragmentation function provides the cleanest access to the poorly known twist-3 parton distribution e(x), which is intimately related to the mechanism of dynamical chiral symmetry breaking in QCD. When sensitive to details of transverse-momentum dynamics of partons, the di-hadron fragmentation functions for a longitudinally polarized quark can be connected to the longitudinal jet handedness to explore possible effects due to CP-violation of the QCD vacuum. In this review, we outline the formalism of di-hadron fragmentation functions, we discuss different observables where they appear and we present measurements and future worldwide plans.

Di-hadron fragmentation and mapping of the nucleon structure

Pisano S;
2016-01-01

Abstract

The fragmentation of a colored parton directly into a pair of colorless hadrons is a nonperturbative mechanism that offers important insights into the nucleon structure. Di-hadron fragmentation functions can be extracted from semi-inclusive electron-positron annihilation data. They also appear in observables describing the semi-inclusive production of two hadrons in deep-inelastic scattering of leptons off nucleons or in hadron-hadron collisions. When a target nucleon is transversely polarized, a specific chiral-odd di-hadron fragmentation function can be used as the analyzer of the net density of transversely polarized quarks in a transversely polarized nucleon, the so-called transversity distribution. The latter can be extracted through suitable single-spin asymmetries in the framework of collinear factorization, thus in a much simpler framework with respect to the traditional one in single-hadron fragmentation. At subleading twist, the same chiral-odd di-hadron fragmentation function provides the cleanest access to the poorly known twist-3 parton distribution e(x), which is intimately related to the mechanism of dynamical chiral symmetry breaking in QCD. When sensitive to details of transverse-momentum dynamics of partons, the di-hadron fragmentation functions for a longitudinally polarized quark can be connected to the longitudinal jet handedness to explore possible effects due to CP-violation of the QCD vacuum. In this review, we outline the formalism of di-hadron fragmentation functions, we discuss different observables where they appear and we present measurements and future worldwide plans.
File in questo prodotto:
File Dimensione Formato  
Di-hadron_fragmentation_and_mapping_of_the_nucleon_structure_SilviaP_n1.pdf

non disponibili

Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14249/584
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact